Course specifications

Programme(s) on which the course is given	Pre-Master, PureMathematics Major		
Major or minor element of programs			
Department offering the program	Mathematics Mathematics		
Department offering the course			
Academic year / Level Date of specification	Post – graduate studies		
A- Basic Information			
Title: Numerical Analysis	Code: M6118		
Credit Hours: 2 hrs Lecture: 2 hr	S		
Tutorial: 0 Practical:0	Total: 2 hrs		

Teaching Staff: Dr. Naglaa El-Shazly B- Professional Information

1 – Overall aims of course

The course is the basic course in numerical methods, introduces students to: know some special matrices (Hessenberg – Permutation – Normalized – idempotent and Nonderogatory matrices). Introduce and know some basic results on eigenvalues and eigenvectors (Schur's triangularization theores and its applications – diagonalization of Hermitian matrices). Some useful transformations in numerical linear algebra and their applications, know and apply LU Factorization, Householder transformation, QR factorization and Givens rotation. Solve linear systems using Orthogonal factorization methods and Cholesky factorization for symmetric positive definite matrices. Know and analyze the perturbation of the linear system. Learn solutions to ordinary differential equations Numerical numerical differentiation and integration. Introduce and apply Stirling's and Bessel's formulas, Maxima & Minima of tabulated function and Romberg's rules. Define and apply Kronecker product, Vec-operator and Moore –Penrose inverse.

2 – Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding:

a1- Know some special matrices and basic results on eigenvalues and eigenvectors

a2- Understand some useful transformations in numerical linear algebra and their applications

a3- Know and analyze the perturbation of the linear system

a4- Learn the basic methods for solving ordinary differential equations.

a5- Define and apply Kronecker product, Vec-operator and Moore – Penrose inverse.

b- Intellectual Skills

b1 Analyze and compare the different techniques for solving linear systems

b2 Analyze and compare the different techniques for solving ordinary differential equations

c- Professional and practical skills

The student should be able to;

c1- Set a program of exercise based on the tools he learned in the course.

c2-Weight the outcomes of the course through its use in practical application in different

scientific fields.

d- General and transferable skills

The student should be able to;

d1- Discuss and work in a group in order to solve numerical approximation problems.

d2- Discuss and work in a group in order to program numerical solutions using Matlab

d3- Demonstrate developed solutions and programs

d4-

Deal with computational problems related to the topics covered in the course

d5-Provide an extend and modification of the methods of the course for more complicated problems in computational mathematics.

3- Contents

Topic		No.	Lectu
		of	re
		hours	
Some special matrices:		10	5
Hessenberg – Permutation – Normalize	ed –		
Companion – Nonderogatory and idem	potent		
matrices. Some basic results on eigenv	alues and		
eigenvectors (Schur's triangularization	theores and its		
applications - diagonalization of Herm	itian matrices)		
Norms of vectors and matrices (nro	nerties and		
Some useful transformations in num	erical	8	4
linear algebra: LU Factorization, Householder			
transformation, QR factorization and C	bivens		
rotation. Solve linear systems using Or	thogonal		
factorization methods and Cholesky factorization for			
symmetric positive definite matrices –	Types of		
errors - Condition number - accuracy of solution of		10	
Numerical differentiation and integration:		10	5
Stirling's formula – Bessel's formula – Maxima &			
Minima of tabulated function and Romberg's rules.			
Kronecker product, Vec-operator and I	Moore –		
Penrose inverse.			
Relationships between roots and coeffi	cients of the		
4– Teaching and learning methods			<u> </u>]
4.1- Lectures			
4.2- Working on hand in assignment	nts		
4.3- Attending practical classes			
5- Student assessment methods			
5.1 Mid term written exam	to asse	ess un	derstanding
mpetencies			· · · · ·
5.2 Oral Exam	to assess atter	ndance a	ind
resting.			
5.3 Semester hand in assignments	to assess under	rstandin	g
fessionalism.			
5.4 Final term written Exam	to assess comp	orehensi	on.
Assessment schedule	-		
Assessment 1 Mid term	Week 4 au	nd 7	

Assessment 2semester activitiesWeek 5 and 8Assessment 3Final term oral examWeek 13Assessment 4final term written examWeek 14Weighting of assessmentsWeek 14

Mid-Term Examination20%Semester Work (homework assignments + oral tests)20 %Final-term written Examination60%Total100%

Any formative only assessments

6- List of references

6.1- Course notes

Collected and prepared notes that cover the main topics in the course content

6.2- Essential books (text books)

6.3- Recommended books

6.4- Periodicals, Web sites, ... etc Non.

7- Facilities required for teaching and learning

PC's - packages for ready made scientific programs. Course coordinator: Dr. Naglaa El-Shazly

Head of Department: Prof. Dr. Mohamed Abel-Latif Ramadan

Date: / /